Skip to content

Installation Guide

Prerequisites

Required System Dependencies

  1. FFmpeg
  2. Windows: Download from FFmpeg website
  3. Linux: sudo apt install ffmpeg or equivalent
  4. macOS: brew install ffmpeg
  5. Verify installation: ffmpeg -version

  6. Tesseract OCR

  7. Windows: Install from UB-Mannheim
  8. Linux: sudo apt install tesseract-ocr or equivalent
  9. macOS: brew install tesseract
  10. Verify installation: tesseract --version

Make sure both FFmpeg and Tesseract are added to your system PATH.

Basic Installation

Install MKV Episode Matcher using pip:

pip install mkv-episode-matcher

Installation Options

GPU Support

For GPU acceleration (recommended if you have a CUDA-capable GPU):

pip install "mkv-episode-matcher"
Find the appropriate CUDA version and upgrade Torch (e.g., for CUDA 12.4) from the compatibility matrix:
pip install -U torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu124

# Verify GPU availability
mkv-match --check-gpu true

Development Installation

For contributing or development:

# Clone the repository
git clone https://github.com/Jsakkos/mkv-episode-matcher.git
cd mkv-episode-matcher

# Install UV
pip install uv

# Install with development dependencies
uv sync --dev

API Keys Setup

  1. TMDb API Key (Optional)

    • Create an account at TMDb
    • Go to your account settings
    • Request an API key
  2. OpenSubtitles (Optional)

System Requirements

For GPU Support

  • CUDA-capable NVIDIA GPU
  • CUDA Toolkit 12.1 or compatible version
  • At least 4GB GPU memory recommended for Whisper speech recognition

For CPU-Only

  • No special requirements beyond Python 3.9+

Verification

Verify your installation:

mkv-match --version

# Check GPU availability (if installed with GPU support)
mkv-match --check-gpu true

Troubleshooting

If you encounter any issues:

  1. Ensure you have the latest pip: pip install --upgrade pip
  2. For GPU installations, verify CUDA is properly installed
  3. Check the compatibility matrix for PyTorch and CUDA versions
  4. If you encounter any other issues, please open an issue on GitHub